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This paper describes some experiments in rotating flows in which solitary waves 
were observed. 

In  one set of experiments the waves were generated on a swirling flow whose 
circumferential velocity distribution resembled that of the Rankine combined 
vortex. This flow was established by stirring the liquid in a large cylindrical 
container, in much the same way as one stirs a cup of tea, and it was often found 
at the cessation of the stirring that a wave had been generated. This wave 
propagated along the vortex core and was reflected at the bottom of the container 
and at the free surface of the liquid and displayed the remarkable permanence 
characteristic of solitary waves. It appears that, to a first approximation, the 
speed of the waves may be calculated simply from the depression of the free 
surface of the liquid at  the centre of the vortex. These waves are the rotating- 
fluid counterpart to the solitary waves in fluids of great depth recently discussed 
by Benjamin (1967b) and by Davis & Acrivos (1967). 

In  a second set of experiments, solitary waves were generated in a long cylindri- 
cal tube and are analogous to the familiar solitary wave of open-channel flows. 
The theory indicates that these waves are possible in any swirling flow in which 
the angular velocity is distributed non-uniformly . Thus, a long liquid-filled tube 
was started rotating about its axis with a uniform angular velocity, and waves 
were generated before the fluid had reached a state of uniform rotation. Using 
the known velocity distribution for a tube of infinite length, comparisons have 
been made between the observed wave forms and the theoretical calculations of 
Benjamin (1967a). There is good agreement between the observed wave forms 
and the theoretical predictions. 

1. Introduction 
The present interest in waves of finite amplitude and permanent form arose 

from the vortex-breakdown phenomenon: this is the abrupt change in structure 
that sometimes occurs in a swirling flow, particularly in the leading-edge vortex 
formed above a sweptback lifting surface. An example of the phenomenon, due 
to Lambourne & Bryer (1962), is reproduced in Batchelor’s textbook (1967, 
plate 22). Among the several attempts to account for the phenomenon theoreti- 
cally, Benjamin (1962, 1965) proposed that the structural change is a finite 
transition between two dynamically conjugate states of axisymmetric flow, 

t Present address : Department of Chemical Engineering, University of Wisconsin, 
Madison. 
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analogous to the undular bore of open channel flow. This theory accordingly 
indicates the existence of waves of finite amplitude and permanent form in 
swirling flows, and in a development of the theory Benjamin (1967~) has given 
an approximate analysis of these waves, when bounded by a cylinder, based on 
the assumption of large wavelengths and wave speeds close to the critical value 
for infinitesimal waves. The analysis suggests that progressive waves of this type 
are possible in any swirling flow whose angular velocity is distributed stably 
and non-uniformly. 

A feature of the experimental observations of the phenomenon is the difficulty 
of preserving the axial symmetry of the motions, as indicated in the photograph 
of Lambourne & Bryer (1962), or of producing the axisymmetric wave train 
suggested by the theory. However, in some carefully controlled experiments, 
Harvey (1962) has come very close to producing a wave train: his experiments 
showed the first wave of a mild vortex breakdown to be followed by a second one, 
unless special measures were taken to suppress it, but by the stage of the second 
wave he found that the motions had become unsteady and irregular. On the other 
hand, it is possible that such a wave train may be realized more distinctly as 
a travelling disturbance (the counterpart of the progressive bore) and it was the 
initial aim of the present experiments to produce this kind of disturbance. It is 
well known that a body moving slowly along the axis of a uniformly rotating 
fluid pushes an ever-lengthening column of fluid ahead of itself (see Taylor 1922, 
Benjamin & Barnard 1964), and it was anticipated that the counterpart of the 
Taylor column, in flows whose angular velocity is distributed non-uniformly, 
would be analogous to the progressive bore of open channel flows. But, because 
of limitations of the experimental apparatus, we have been unable to generate 
this kind of flow and have focused our attention on the limiting form of the bore, 
the solitary wave. The experiments indicate that the solitary wave may be 
realized in practice, and its properties are in good agreement with Benjamin’s 
(19674 approximate theory of progressive waves of finite amplitude and 
permanent form in a cylindrical tube. 

A discussion is also given of the long progressive waves of finite amplitude and 
permanent form that arise in flows of large radial extent. The primary flows on 
which these waves are manifested have a central core within which the circula- 
tion varies significantly and which is surrounded by an extensive region of fluid 
with constant circulation. The existence of these waves was not unexpected 
from comparisons with the waves of permanent form in stratified fluids of great 
depth described by Benjamin (19673) and by Davis & Acrivos (1967); indeed 
it appears that the present observations of solitary waves arising in fluids of 
large radial extent are the rotating-fluid counterpart of their internal waves. 
Waves of this kind are of particular interest since most reports of the vortex 
breakdown have been made in flows of large radial extent: for example, the 
photographs of Lambourne & Bryer (1962) already mentioned, and some obser- 
vations by Maxworthy (1966, 1968) and by Pritchard (1968)t of the breakdown 

t The structural change of the flow that occurs in this situation usually takes place 
very near the stationary surface and there may be some doubt about this interpretation 
of the change of structure of the flow. 
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of a jet of fluid ejected from an Ekman layer on a stationary surface are all 
manifested on a core of strongly rotating fluid surrounded by a vast region of 
fluid of (essentially) constant circulation. In  addition, recent observations by 
Granger (1968) of surges on a ‘bathtub vortex ’ have a remarkably similar appear- 
ance to the initial stages of mild forms of the vortex breakdown. 

Benjamin’s (19673) theoretical work has shown that the form of long waves 
of finite amplitude is indicated by the ‘ dispersion relation’ between the frequency 
o and the wave-number k of infinitesimal periodic waves, for which every 
dependent variable takes the form 

(1.1) = 8 e iW-kx)  

where x is the co-ordinate in the direction of propagation and zi may be a function 
of the co-ordinate perpendicular to  x. For long waves it is sufficient to consider 
the leading terms of the dispersion relation when expanded as a series for small k. 
In the customary case of waves of finite amplitude in fluids of finite total depth 
a good approximation to the phase velocity W (  = w / k )  is, for small enough 
values of k ,  

in which p is a positive constant depending on the particular system under 
investigation. For these waves the pham velocity has a ‘smooth’ maximum Wo 
at k = 0. 

However, Benjamin (19673) shows that, for internal waves in fluids of great 
depth, the leading terms of the dispersion relation for infinitesimal long waves are 

w = & ( I - p )  (1.2) 

w = K(1-Ylk l )  (1.3) 

with y > 0, and the phase velocity has a ‘sharp’ maximum at k = 0. The differ- 
ence between (1.3) and (1.2) has crucial implications on the form of long waves 
of finite amplitude since it leads to different properties for the two cases with 
regard to the effective length scale of the waves: Benjamin discusses this point 
in detail, 

Of the two kinds of solitary wave discussed herein, the waves arising in a 
fluid of large radial extent have leading terms of their dispersion relation of the 

(1.4) 
form 

PI > 0, which we see is again different from (1.2) and (1.3). However, the phase 
velocity described by (1 -4) has a ‘smooth ’ maximum at k = 0 and we anticipate 
that the effective length scale of the solitary waves will be determined by similar 
considerations to those employed in the customary case, but we have been 
unable to  find the solution to the resulting solitary-wave equation. The dis- 
persion relation for waves generated in a long cylindrical tube has leading terms 
of the form indicated in equation (1.2)) and accordingly the solitary wave in this 
case is analogous to the customary solitary wave (see Benjamin 1967a). 

In  the fist half of the paper these theoretical aspects are discussed in relation 
to the experiments to follow. Then in the latter half of the paper the experimental 
observations of the solitary waves are described and compared with the theories. 
For the motions in it fluid of large radial extent the critical speed of extremely 
long infinitesimal waves has been found, for a nearly realistic model, and this 

w = W0(l +P1kZ1og IkI)’ 
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speed agrees fairly well with the speeds of the observed wave forms. The experi- 
ments concerning solitary waves in a tube are compared with the theory as 
follows. A long liquid-filled tube, initially at  rest, was suddenly set rotating 
about its own axis with a uniform angular velocity, and before the liquid had 
attained a state of rigid-body rotation the wave was generated. Knowing 
the distribution of circumferential velocity we can, for this experiment, give 
a theoretical estimate of the critical speed and from measurements of the actual 
wave speed we deduce the amplitude and shape of the solitary wave (Benjamin 
1967a). These are found to be in fairly good agreement with the observed wave 
form. 

2. The governing equations 
The motions are described in terms of the stream function @ = @(r,z )  in 

which r and x denote the radial and axial co-ordinates, with x increasing in the 
direction of the flow. It is convenient to introduce y = &r27 so that 

The waves are assumed to arise on a primary, cylindrical state of flow in which 
the axial velocity W and the swirl velocity P are prescribed functions of y alone. 
Therefore, the stream function Y for the primary flow is defined by W = dY/dy, 
Y(0) = 0. Accordingly the stagnation pressure p H  = I, + 3p( W 2  + V 2 )  and the 
quantity I = yV2, which is (1/8m2) times the square of the circulation, are both 
functions of y or of Y. For an axisymmetric flow arising from this primary state 
without energy losses, the stream function {f(y, x) satisfies the equation (see 
Fraenkel 1956, or Benjamin 1962) 

It is convenient to transform (2.1) to an equation for y = y(z,$), where y 
represents the distance of the stream surface @ from the axis. Under this trans- 
formation the radial and axial components of the velocity are 

and the governing equation (2.1) becomes 

In this study we are interested in waves that travel at constant speeds and these 
can be made stationary on a flow of uniform velocity W .  Hence in the undisturbed 
primary flow, we see for constant W that y has the value @/ W ,  and accordingly 
(2.3) is readily expressed as an equation for y = y(x, 7) where 7 = $1 W .  
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3. Infinitesimal sinusoidal waves 
Initially we consider a fluid that has a large radial extent, and we assume the 

existence of a region y < a near the axis, within which the circulation varies 
significantly and outside which the circulation is a constant. The idea is illustrated 
in figure 1 where the flow field is defined by regions I and I1 respectively. Then, 
to determine the motions within a cylindrical tube, we consider a solid boundary 
to exist at  y = a and we use the boundary conditions applicable to this new 
situation. 

Region I Region I1 

Y+ 
FIGURE 1. Definition sketch showing the circumferential velocity distribution. 

Approximate solutions of equation (2.3), written in terms of 7, may be found 

Y - 7 = a x ,  7) (3.1) 
by putting 

and expanding in powers of e. The zeroth-order solution is H’(7) = (1/27)1’(7), 
which implies that (I/p) dp/dq = V2T2/27. 

At the first order in e we find, in the outer region, that both 1‘(7) and H’(7)  
vanish, and hence the linearized equation is 

The boundary conditions imposed on 5 in the outer region are that c - + O  as 
7-f co and that 5 takes the value [(a) at y = a. A solution of equation (3.2) of 
the form 5 = d(7) eikz, k real, satisfying the boundary conditions is 

d = Jq7Kl(l~l&w), for 7 > a,  (3.3) 

where K,  is the modified Bessel function of the second kind of order one. A is a 
constant determined at 7 = a. 

In  region I the linearized equation is 

and, for solutions of the form = d(7) eikx, the appropriate boundary conditions 
are 

$40) = 0,  

$, $’ continuous across 7 = a. 
(3.5) 

F L M  42 5 
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Equation (3.4) coupled with (3.5) and (3.3) determines a set of eigenvalues 
W(") for a given k .  The largest value, W0), is the critical speed of infinitesimal 
waves, and has a maximum a t  k = 0. Benjamin (1967b) has shown that the way 
W(O) approaches its maximum at k = 0 greatly influences the form of long waves 
of finite amplitude: for example, Benjamin shows that the length scale of the 
conventional solitary wave of open-channel flow is quite different from that of 
the internal solitary wave in fluids of great depth, a consequence of the different 
forms of W(O) in the two cases. Thus we examine the form of the dispersion rela- 
tion near k = 0 for the two situations of interest in this investigation. 

3.1. InJinitesirnal waue8 in a @id of large radial extent 

We assume that the primary flow has the same distribution of circumferential 
velocity as that of the Itankine vortex. Thus the swirl velocity is given by 

(3.6) } 
Region I 

Region I1 (y > a): V = 2Qa/r, 
(y < a): V = Qr, I = 2Q2y2, 

I = 2Q2a2. 

An approximate solution in region I1 is given by equation (3.3). The motions 
in region I, for small sinusoidal disturbances, are found from (3.4) which becomes 

(3.7) A)?/+ ( W r )  4 = 0, 

where r2 = ( 2 ~ ~ / ~ 3 - k 2 / 2 ) .  

The solution of (3.7) satisfying the condition $(O) = 0 is (for > 0 )  

and J1 is the first-order Bessel function of the first kind. 
The condition that rj5 is continuous across 9 = a determines the ratio of the 

constants A and B of (3.3) and (3.8). Therefore, the requirement that 4' is 
continuous across 7 = a constitutes an eigenvalue problem for W ,  and we find 
that W is determined by 

and KO, K ,  are the zero and first-order modified Bessel functions of the second 
kind. 

When k is small the right-hand side of (3.9) is small, and hence its solutions are 
near the zeros of J0(21 Fl.Ja). Expanding J0(21 rl&) in a Taylor series about its 
zeros we find that the eigenvalues are given approximately, for small k, by 

(3.10) 

wherej,,, is the nth zero of Jo and y is Euler's constant. Restricting our attention 
to the first eigenvalue we see that (3.10) implies a dispersion relation of the form 

w = WO{l +@,k2log jk( +...I, 
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where p1 is positive and W,, the critical speed for long waves, is 

(3.11) 

3.2. The critical speed for the experiment in aJluid of large radial extent 

We see from (3.11) that the critical speed of infinitesimal waves propagating 
along a Rankine vortex is determined by two parameters Q and a. Anticipating 
the experiments, it is interesting to note that, if this vortex is generated in a body 
of fluid having a free surface, the critical speed can be calculated from the de- 
pression of the free surface at the centre of the vortex. To see this we denote 
by z the height of the surface of the liquid above its level at  the axis of rotation, 
and let z -+ zo at large radii. Thus z may be described as a function of the pressure 
( p )  in the liquid and is given by 

(3.12) 

where g is the acceleration due to gravity and p is the density of the liquid. But 
(3.12) may be expressed in terms of the circumferential velocity ( V ) ,  and intro- 

1 g v 2  
ducing y = Jr2 we find that 

gz = 2/(, -y dY. 
(3.13) 

Hence the circumferential velocity distribution may be represented by a new 
parameter, [( = z/z,), and for extremely long sinusoidal waves (k = 0) we find 
that, in terms of 5, (3.4) becomes 

$yg+n(25'/y +f;")$ = 0, (3.14 a)  

where n = gz,/W2. If the velocity V N ( l lr)  as r - f m  the boundary conditions 

I are (cf. Benjamin 19676, $ 5 )  W) = 0, 
+'(y)+O as y+m. 

(3.14b) 

As indicated above, this system of equations determines a set of eigenvalues the 
largest of which is termed the critical speed. 

Using the velocity distribution of the Rankine vortex (equation (3.6)) we 

(3.15) 
find that (3.14) becomes 

The solution of the system (3.15) is of the same form as that given in (3.8) and 
the boundary conditions require that the first mode has n = iji,l = 1.446. Hence 
the critical speed for infinitesimal waves is, in this case, 

w, = 2/(gz,)/1.202, (3.16) 

which is simply related to the depression of the free surface of the liquid at the 
centre of the vortex, as anticipated above. 

However, when V has more realistic forms it is not so easy to solve (3.14) and 
find n. But a good approximation to the first mode may be found in any specific 
case by the Rayleigh method of approximating eigenvalues. The system (3.14) is 

1 $yy+ Q = 09 

Q(0) = 0, $'(a) = 0. 

5-2 
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equivalent to  the variational principle that 4 should give a minimum value of n 
according to 

(3.17) 
som $ P Y  

jom (5" + 25'lY) 42dY. 
n =  

The basis of the Rayleigh method is that an approximation to qi(y), satisfying 
the boundary conditions, gives an upper bound to the smallest eigenvalue when 
substituted in (3.14), and this upper bound is often a good estimate of n. The 
estimate is made more accurate when 9 is chosen to depend on parameters which 
are varied to make n a minimum. 

As an example we approximate the system (3.15) by the function 

qi = sin (n-y/2a). (3.18) 

The estimate of n from (3.17) is n = 1.50, which is fairly close to the correct 
answer 1.446. 

When $ is chosen with a free parameter, which may be varied to minimize n,  
a better estimate is obtained. For example, if we choose 

$ = x - , t ~ + - 4 ( 1 - ~ ) x 3  (5 = y/a) (3.19) 

the expression (3.17) for n becomes 

(3.20) 

and the minimum value, found by varying A, is n = 1.447. The correct answer 
for n is 1-446 so the method appears to work fairly well in this case. Thus, having 
checked the method, we proceed to a more realistic velocity distribution and use 
it to estimate the critical speed. 

A better representation of the velocity distribution (see figure 3 to follow) is 
given by the Burgers vortex, 

V2 = (D/y) (1 - e-KY)2, (3.21) 

where D and K are constants. With a swirl velocity of this form, the system 
(3.14) becomes 

(3.22) 

and the smallest eigenvalue gives the critical speed of infinitesimal waves. TO 
estimate this eigenvalue by the Rayleigh method we choose 

4 = 1 - (3.23) 

which satisfies the boundary conditions with any A > 0. I n  this case the estimate 
of n according to (3.17) is 

n = l k E ? (  
( A  + 2) log ( A  + 2) + h log h - 2(h + 1) log ( A  + 1) 

- 2(h + 1) log 2(h + 1)  + 2h log 2h + 2( 2h + 1) log (2h + 1) 
)-I, ( 3. 24) 

2 
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where h has been written for KIA. The minimum value of n, which is found bv 
maximizing the bracketed term of (3.24) is 1.691. Hence the critical speed df 
infinitesimal waves is 

= 4(gz0)/ l*30.  (3.25) 

An interesting feature of the analysis is that, as in the previous example, the 
estimate of n is independent of the cross-sectional dimension, K ,  of the vortex, 
and the critical speed is again given in terms of the depression of the surface 
of the liquid at  the centre of the vortex. 

3.3. InJinitesimal waves in a bounded JEuid 

It was anticipated in the introduction that waves of finite amplitude and 
permanent form progressing along a cylindrical tube would be analogous to the 
familiar finite-amplitude waves of open channel flow. Accordingly the dispersion 
relation has a ‘smooth ’ maximum near k = 0, and to illustrate this it is sufficient 
to consider a uniformly rotating fluid within a cylinder whose radius is given by 
y = a. The motions are governed by equation (3.7) with the boundary condition 
at 7 = a given by #(a) = 0. The solution is given in (3.8),  and the condition 
$(a) = 0 determines a set of eigenvalues given by 

2 l W a  = j L n  (3.26) 

where j ,  is the nth zero of J1. 
Thus, we see that the dispersion relation is of the form 

W = K(l -Pk2+  ...), (1.2) 

where p > 0, and W, = 2QJ(2a)/j1,,. 

3.4. The critical speed for the experiments in a bounded jluid 

The theory ( $ 4  and see Benjamin 1967a) indicates that the solitary wave does 
not exist in a long cylindrical tube if the primary flow is one of uniform angular 
velocity, and recent experiments (Pritchard 1969) confirm this prediction. The 
experiments suggest that, in a uniformly rotating fluid, no (finite amplitude) 
disturbances are propagated at speeds in excess of the critical speed, thereby 
precluding the possibility of waves of finite amplitude and permanent form. Thus, 
to realize the solitary wave in a long tube we require a non-uniform (and stable) 
distribution of circumferential velocity. This has been accomplished in the 
present experiments by generating the wave before the fluid in the tube, in 
response to suddenly starting the tube rotating, has had time to reach rigid-body 
rotation; for sufficiently large wave speeds the velocity distribution changes by 
a negligible amount during the time of passage of the wave along the tube. 

In  an infinitely long tube of radius b, containing fluid initially at  rest, an exact 
description of the velocity distribution is known at any instant after the tube 
begins rotating about its axis with a uniform angular velocity, a. Thus, after 
a time t ,  the circumferential velocity at a radius r is (see Batchelor 1967, p. 203) 

(3.27) 
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where j, is the nth zero of J1, The velocity distribution, V ,  is shown in figure 2 at 
various stages of the development of the flow. 

This velocity distribution is nearly realized in the laboratory in a very long 
tube. The difference between the laboratory experiment and the theoretical 
distribution arises because of the finite length of the tube, but it appears that, 
in a long tube, the ends have a fairly small effect on the initial flow.? To check 
this some measurements of the circumferential velocity were made during the  
spinning-up process by taking cine photographs of small (approximately 1 mm 

0 0.5 

rlb + 
1.0 

FIGURE 2. The velocity distribution in an infinitely long tube started rotating about its 
own axis at t = 0. The curves correspond to the following values of tv/b2 (increasing out- 
wards): 0.020; 0.050; 0.075; 0.100; 0.150; 0.200. The velocity everywhere differs by less 
than 0.01 yo from that of rigid-body rotation for values of tv/b2 2 1.0. 

diameter) neutrally buoyant particles suspended in the liquid. The results of 
these measurements are given in figure 2, and although the results are subject 
to a fairly large error it appears that the theoretical distribution (3.27) is a good 
description of the circumferential velocities in the experimental apparatus. 

Hence the theoretical velocity distribution (3.27) can be used with a high 
degree of confidence to calculate, at  any instant, the critical speed of infinitesimal 
waves in the tube. This speed is found from the smallest eigenvalue (for extremely 
long waves) of (3.4), taken with the boundary conditions g(0) = 0,  <(a) = 0 (or 
see (4.1 1)  to follow). Because of the complicated expression for V the eigenvalues 

-f In  these experiments the upper surface of the water was free and a layer about one 
tube diameter in depth, of a more dense liquid (carbon tetrachloride), was placed in the 
bottom of the tube. It is thought that this layer of carbon tetrachloride considerably 
reduced the meridional flow in the tube, but no quantitative measurements were made 
to check this. 
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have been found numerically. The system of equations was represented by its 
first-order finite differences and the eigenvalues of this representation were 
found. The computations suggested that this method of solution gave the desired 
results: the solutions appeared to converge very rapidly towards a limit as more 
and more accurate representations of the equations were taken, and the answers 
agree to a very high accuracy with the analytic solution for the case of a uniform 
angular velocity distribution ( t e r n ) .  The results of these computations are 
given in figure 9, to follow. 

4. Long waves of finite amplitude 
4.1. The solitary wave in ajluid of large radial extent 

It is assumed that the solitary wave arises on a primary flow having the same 
distribution of circumferential velocity as that of the Rankine vortex described 
in the infinitesimal wave theory (see equation (3.6)). To find an approximation 
to stationary waves of finite amplitude we must develop at least two stages of 
an asymptotic expansion in terms of a small parameter e, measuring amplitude. 
Thus, we write 

where X represents a ‘stretched’ axial co-ordinate such that derivatives with 
respect to X are of the same order of magnitude as the functions differentiated. 
Guided by the considerations outlined in the introduction we specify 

x = €ax (4.2) 

for a system having a dispersion relation with leading terms of the form (1.4). 
The wave speed W is also represented by a series expansion, and hence we put 

W 2  = W : ( ~ + C A ~ + . . . ) ~  (4.3) 

where Wo is the ‘critical’ speed for infinitesimal waves, as given by (3.11). 
The solution in region I1 follows the same arguments as described in the 

linearized theory. In terms of the scaled co-ordinates the governing equation 

(4.4) 
for region I1 is 

8 &+- 6xx = 0 (7 2 a) .  
211 

To find approximate solutions for long waves of arbitrary shapes we assume 

For a solitary wave, F ( X )  may be expressed in terms of a Fourier integral with 
transform P(K1 where 

Then the solution of (4.4), of the form (4.5) and which vanishes for 7 e 0 0 ,  is 
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I n  order to match the solutions for the inner and outer regions we require that 
&(X,T) is continuous across 7 = a. It follows from (4.7) that 

Since the theory is based on long waves it is assumed that P ( K )  + 0 sufficiently 
rapidly, as I K I increases, that we may use the well-known approximations to 
the Bessel functions for small K ;  thus we find that 

where 9 { J ’ ( X ) }  is approximately given by 

(4.10) 

Having determined the outer boundary condition for region I we may now 
proceed with the solution in that region. The first approximation to equation 
(2.3) follows the linearized theory (cf. (3 .7))  and is given by 

with the boundary conditions 

(4.1 1 a )  

(4.11b) 

For long waves we assume the solution of (4.11) may be written in the form 

b = P ( X )  $ o ( T ) ,  (4.12) 

$&a) = 1, so that a second approximation to (2.4) is 

= R(T), say. (4.13a) 

The outer boundary condition, determined from region 11, is given by (4.9). 
Thus the boundary conditions on (4.13 a )  are 

51(X,O) = 0, 

L V ( X ,  a )  = - qwq. 
Only the particular integral of ( 4 . 1 3 ~ )  is needed and i t  is 

(4.13b 

(4.24) 
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Then for (4.14) to satisfy the boundary conditions (4.13b),  we must have 

73 

AF,, + BF2 + CF = F { F > ,  
I n  

I 
- .. u 7  ' 1  

(4.15) 

The solution of (4.15), with S { F }  determined by (4.10),  gives the approximate 
form of the solitary wave. Although the explicit solution of this equation is not 
known, Dr T. B. Benjamin has indicated in reoent correspondence that it in fact 
belongs to a class of equations for which he has been able to prove the existence 
of a solitary-wave solution. 

4.2. The solitary wave in a radially bounded jluid 

The analysis proceeds in a similar way to that above, except that the flow domain 
is restricted to region I and that the outer boundary condition for region I is 
(because of the tube wall at  q = a) one of no radial displacement so that 
[ ( X , a )  = 0. Moreover, the preceding discussion on the effective length of the 
wave suggests that we once again use a scaled axial co-ordinate X ,  given by 
x = E i X .  

Thus a first approximation to (2 .3)  is again given by ( 4 . 1 1 ~ )  but the solution 
is subject to the new outer boundary condition of Q ( X , a )  = 0. 

The second approximation (of the form c0 = F ( X )  $o(q)) is again given by 
the integral (4.14),  but the outer boundary condition Cl(X,  a) = 0 requires that 

(4.16) 

This may be written as AFAyx + BF2 + CF = 0 (4.17) 

with A ,  B and C the same as given in (4.15). Equation (4.17) was first derived by 
Benjamin ( 1 9 6 7 ~ )  and has the solution 

F = - $-(C/B) sech2{ - &(C/A)  X } .  (4.18) 

An important consequence of Benjamin's solution arises when V = Qr: the 
coefficient B vanishes and hence the solitary wave does not exist when the flow 
is one of rigid-body rotation. 

5. Experiments in a fluid of large radial extent 
To simplify the analysis it has been assumed that the solitary wave arises on 

a primary flow described by the Rankine combined vortex (see (3.6)). Although 
this flow cannot be established in practice a real vortex exhibits the major charac- 
teristics of the Rankine vortex and the analysis can, in principle, be extended 
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to cover more realistic distributions of the circumferential velocity (Benjamin 
1967b discusses this point in greater detail). 

Turner (1966) has measured the swirl-velocity profile in a laboratory model 
of a tornado vortex and found it to have a uniformly rotating central core sur- 
rounded by a large expanse of fluid with a constant circulation, the two regions 
being connected by a smooth transition, as opposed to the sharp boundary in 
the Rankine vortex. Velocity profiles similar to those measured by Turner have 
been found in the present experiments and it appears that the results may be 
fairly well represented by the Burgers vortex (see (3.21)). 

Radius r /b  

FrCURE 3. The circumferential velocity distribution after stirring a liquid in a cylindrical 
container of radius b. The parameters were determined from the measured velocity at 
r/b = 0.6 and from an independent measurement of z,, (the depression of the free surface 
at r/b = 0). (a) V = Rr for 0 < r < R ,  V = RR2/r for R < r < 00. ( b )  V = J2(D/r)( 1 - eKr*/2) .  

The present experiments were carried out in a large Perspex cylinder (30.5 cm 
diameter and 61 cm in length) filled with water. The liquid in the cylinder was 
stirred, in much the same way as one stirs a cup of tea, with a 1 cm-diameter rod, 
the resultant Ekman layer on the bottom of the container causing a concentra- 
tion of vorticity at  the centre of the cylinder. To see how closely this flow was 
represented by the vortex models some measurements were made of the circum- 
ferential velocity distribution. These measurements were made at the surface 
of the liquid from streak photographs of slightly buoyant spheres of about 1 mm 
diameter. Since most of the volume of any sphere was below the surface and since 
the surface film had been removed with a suction hose immediately preceding 
each experiment, it  was thought that this measurement should give a good 
estimate of the swirl velocity. The results of a measurement of this kind are shown 
in figure 3 and the data is compared with the two vortex models. Both these 
models are characterized by two parameters, and hence two independent 
measurements of the flow are needed to specify them. A typical value of the 
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circumferential velocity was chosen from the measurements in the region of 
constant circulation which, together with a measurement of the depression of 
the free surface at the centre of the vortex, is sufficient information to specify the 
models. Thus the velocity data has been ‘fitted’ to the models at only one point 
and yet the models represent the measured velocities fairly well at  all radii. 

Thus a swirling flow was established in the Perspex cylinder by stirring the 
liquid with a rod, When the desired amount of circulation had been generated 
in the water the stirring was stopped and the fluid motions investigated by 
introducing a small amount of coloured water to the centre of the vortex.? On 
most occasions the motions of the dyed liquid indicated a wave propagating 
along the axis, being reflected at the surface and at the bottom. It is thought 
that this wave is generated during the stirring procedure. Alternately, if a wave 
is not generated in this manner one may be generated independently by plunging 
a rod (a rod of about 3cm diameter worked well in this case) a short distance 
along the axis and then withdrawing it. The experiment is quite spectacular, 
particularly when dye is introduced at  the surface, because the dye forms into 
a series of mantles and the large displacements that occur in the core of the vortex 
are easily seen. 

By introducing dyed water at  various positions along the axis it was easy to 
follow the passage of the wave along the vortex core, from the top to the bottom 
of the container and back again. It was evident that a fluid particle in the core 
was given a net axial displacement as the wave passed, a characteristic feature 
of the solitary wave. However, the striking feature of the motion is the remark- 
able persistence shown by the wave: the wave could clearly be observed for 
several minutes, in which time it travelled many hundreds of core diameters. 

Some measurements of the wave speed have been made to see how closely it 
corresponds to the theoretical estimates of the critical speed of infinitesimal 
waves described in 33.2. One set of results was obtained by measuring, with 
a stop watch, the time for the wave to travel from the surface, to the bottom of 
the container, and back to the surface. A more accurate set of results was obtained 
from cine photographs of the elevation of the free surface at  the centre of the 
vortex: each time the wave reaches the surface it causes a significant change in 
the surface level and hence the transit time can be determined fairly accurately. 
A typical set of measurements of the level of the surface is shown in figure 4. 
These results not only indicate the speed of the wave, but also give the value of 
zo which specifies the critical speed of infinitesimal waves. An interesting feature 
of the results of figure 4 is the decrease in the wave speed as the time increases, 
corresponding to a decrease in z,,. 

The results of the measurements of the wave speeds are shown in figure 5, 
and the curves for the critical speed W,, according to the two models (see (3.16) 
and (3.25)), are also shown. The measured wave speeds are about 6 % smaller 
than the critical speed predicted by the more realistic model. That the measured 

t The best way the author found of observing the motions was to have a pH indicator 
(e.g. Thymol Blue) in the solution and then introduce one or two drops of sodium hydroxide 
at the centre of the vortex. This can be done conveniently a t  both the top and bottom of 
the container. 
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Surface 
equilibrium level 

4 

Time (see) --f 

FIGURE 4. The depression of the free surface at the centre of the vortex, showing the 
presence of the solitary wave. The undisturbed depth of liquid in the container was 
56.9 em. 

J ( S Z 0 )  (cmlsec) 

FIGURE 5. The velocity of the solitary wave in a fluid of large radial extent. The curves 
are the estimates of the critical speed of infinitesimal waves: - - - , Rankine-vortex 
model (equation (3.16)) ; ---, Burgers-vortex model (equation (3.25)). 
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wave speeds do not exceed the critical speeds is a little disquieting, but as there 
are a number of approximations involved in the interpretation of the experi- 
ment this discrepancy may not be as serious as it appears at  first sight. For 
example, the speed of the wave has been determined from the time taken for 
the wave to travel a distance equal to twice the distance between the free surface 
at the centre of the vortex (when the wave is not near the surface) and the bottom 
of the container. The fact that the arrival of the wave changes the shape of the 
free surface suggests that the measurements shown in figure 5 underestimate the 
actual wave speeds. 

Another source of error will arise from the finite radial dimension of the con- 
tainer. For the case of the Rankine-vortex model it is fairly easy to estimate the 
effect the container wall has on the critical speed. We assume that the primary 
velocity distribution is given by (3.6), but that the wall of the container is at 
7 = Y ,  where Y > a. It then remains to solve (3.7) in conjunction with (3.2) for 
extremely long (k = 0) sinusoidal waves, with the boundary conditions $ ( O )  = 0 
and $( Y )  = 0. The solution of this eigenvalue problem is given by 

Jl(4 +psJo(s) = 0, (5.1) 

where s = 2sZ4(2a)/W and p = ( Y  -a)/2a. For large values of ps the zeros of 
(5.1) lie near the zeros of Jo and it is easily shown that the critical speed is 
approximately 

I n  the present experiments p N 5, and hence the effect of the finite size of the 
container is to decrease the critical speed by about 8 yo of that estimated in (3.11). 
On the other hand, the method used to estimate zo (namely the difference between 
the equilibrium level of the surface before the stirring and the surface level at  the 
centre of the vortex) introduces a compensating error to the theoretical estimate 
of the critical speed. For the Rankine-vortex model the error may be found 
fairly easily, and when a/Y = 0.1 this method of measurement underestimates 
.J(gzo) (and hence QJa) by9 %. Thus it appears that these two sources of error 
very nearly balance each other. 

Another possible source of error may arise from the reflecting properties of 
the wave (especially at the free surface) about which very little is known theoreti- 
cally. To indicate that this mechanism or that some systematic error introduced 
during the measurement of the wave speed could account for the discrepancy 
shown in figure 5, further (slightly less accurate) measurements of wave speeds 
were made in different depths of liquid. The results of these measurements are 
given in figure 6, and summarized in table 1. (This rather complicated figure has 
been included here to indicate that the error may not be a constant function of 
the wave speed.) To summarize the measurements of figure 6 we have used the 
result of (3.25) that, to first order, J(gxo)/W is a constant (=  1.30). Thus, for 
each of the depths of liquid used, the mean value and standard deviation of this 
ratio have been determined and are given in table 1. 

The difference between any two of the mean values of ,/(gz,)/W (except for 
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the 40 and 45cm pairing) is highly significant. It therefore appears that this 
source of error could easily account for the above-mentioned discrepancy in 
the wave speed. 

Depth of liquid Mean value of Standard deviation of 
(cm) v'(qzo)/W J(qz0)IW 
60 1.369 0.130 
45 1.691 0.175 
40 1.726 0.185 
30 1-861 0.283 

TABLE 1 

20 40 

J(P0) (cmlsec) 

FIGURE 6. Estimates of the velocity of the solitary wave for various depths (D) of liquid. 
0 , D  = 60cm;  0, D = 45cm; v, D = 40cm; 0, D = 30cm.------, W = 1/(qz0)/1.30. 

6. Experiments in a long tube 
The apparatus used for these experiments has been described in detail in 

a previous paper (Pritchard 1969). Briefly it consisted of a cylindrical tube of 
5.1 cm diameter and 183 cm in length. The tube was mounted vertically and was 
(usually) rotated at speeds of about 27r radian/second. Thin platinum wires 
spanned the tube at  three axial positions and were used as the cathode of an 
electrolytic cell. Dye traces were produced at  these wires by local colour changes 
o f  the indicator Thymol Blue in response to an electric potential being applied 
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to the cell (see Baker 1966 for details of the method), and these dye traces were 
used to visualize the fluid motions. The movements of a dye trace were recorded 
on cine film, and by employing a suitable arrangement of mirrors two of these 
traces could be recorded, side-by-side, on each frame of the film. 

It was anticipated that solitary waves could be generated in this experiment 
in an analogous fashion to that used in open channels. A convenient way of 
making solitary waves in a channel is to create a ‘mound ’ of liquid by displacing 
a paddle fairly vigorously along the channel for a short distance: a solitary wave 
usually emerges from the disturbance and propagates along the channel to 
large distances. If, however, attempts are made to generate a wave of depression 
in this manner, there results only a transient disturbance which rapidly disperses. 

With regard to the present experiments Benjamin (1967a) has shown, for 
a circumferential velocity distribution of a similar kind to those encountered 
here, that the solitary wave is a wave of inward displacement. This is the type of 
motion produced by moving a body (e.g. a sphere) along the axis of rotation 
in the opposite direction to the direction of propagation of the wave. But, the 
presence of a body in the liquid during the spinning-up process gives rise to 
strong meridional flows as a result of the Ekman layers on the surface of the 
body ; this meridional circulation not only affects the circumferential velocity 
distribution, but also complicates the flow visualization. Hence this technique 
is not a very desirable way of generating solitary waves. On the other hand, a 
wave of inward displacement may be generated by moving an annular body 
(viz. a body that covers the area of the tube between the radius a and the wall of 
the tube) in the same direction as the direction of propagation of the wave. 
Consequently, there is no need to introduce this body into the liquid until it is 
desired to generate the wave. For similar reasons it is more convenient to use the 
(conventional) solid body to generate waves of outward displacement, which 
we anticipate not to have a permanent form. 

To produce a wave of large amplitude it was necessary to create a vigorous 
disturbance with the body, and this was most conveniently done by plunging 
it into the liquid by hand.? Using the annular body a wave would emerge out 
of the disturbance, travel completely down the tube, and be reflected at the 
other end. However, when attempts were made to generate waves of outward 
displacement, by plunging in the solid body, the resulting waves dispersed very 
rapidly. The wave shape was determined from cine-film records by measuring 
the displacement of the particle on the axis, and from this measvrement the 
velocity distribution (w) within the wave was computed. Some typical measure- 
ments of this kind are given in figure 7. These results provide very convincing 
evidence for the solitary wave: curve ( A )  is the velocity distribution of a wave 
form generated when the solid body was displaced in the opposite direction to 
the direction of propagation of the wave and is a wave of inward displacement ; 

t The annular body was a long hollow cylinder which neatly fitted in the tube and 
hence was guided by the walls of the tube ae it was pushed along the axial direction. 
The solid body was also a long cylinder and covered the complementary area of the tube ; 
it was fitted inside the annular body with its end protruding some distance below the end 
of the annular body and thus the solid body also was guided truly along the axis. 
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(B)  is the result of plunging the solid body into the liquid thereby generating a 
wave of outward dispIacement. The curves (C) and (D) are the analogous results 
obtained with the annular body.? 
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FIGURE 7. Two comparisons of a wave of elevation (0 )  with a wave of depression (0) 
for motions in a long cylindrical tube. The two obscrvation points are separated by 15.5b. 
The waves were generated 18b above the first observation point. 

An attempt has been made to measure the radial displacements associated with 
the solitary wave. The measurements were taken from a cylindrical sheet of dye 
formed from a platinum wire that stretched parallel to the axis. The results of 
this measurement are given in figure 8. Unfortunately, the passage of the wave 

7 It is evident from figure 7 that the amplitudes of the (solitary) waves decrease fairly 
rapidly as the wave travels along the tube: for example, for wave form ( C ) ,  the ratio of 
the amplitudes at  the two observation points is 0.65. This change of amplitude is attributed 
to viscous damping in boundary layers near the walls of the tube. A rough estimate of this 
damping has been made (see Pritchard 1968), following a similar calculation to that of 
Keulegan (1948); the calculations estimate that the amplitude of the wave is given by 
A = A ,  e-N(.’*) after it has travelled a distance z along the tube. The constant N is 
given by N = 3.12 (v/bLCl)*, where L is an effective length of the wave and v is the kine- 
matic viscosity of the fluid. For the purposes of this calculation the amplitude A was taken 
to be a constant within the wave. Applying this theory to wave form (C) the value 
obtained for A/Ao was 0.64. While the agreement of this answer with the experimental 
value is most probably fortuitous, it docs suggest that the observed change of amplitude 
can be attributed to viscous dissipation. Similar computations made on waves generated 
in uniformly rotating fluids, where a wave of permanent form docs not esist, indicated 
that this viscous damping could not account completely for the change in amplitude of the 
wave form (cf. Pritchard 1968). 



Solitary waves in rotating JEuids 81 

always caused the cylinder of dye to lose its axial symmetry, leaving it with a 
slightly elliptical cross section and thereby introducing a lot of scatter to the 
results. However, the measurements show that this is certainly a wave of inward 
displacement, and that a typical particle displacement at  r/b N 0.5, for these 
waves, is about 10 % of the tube radius. A wave of elevation, produced under the 
same conditions, gave a radial displacement of about 0.045b at  rlb N 0.5. 

I I I I 1 
1 2 3 4 5 

Time scale (tube periods) 

FIGURE 8. A measurement of the radial displacement associated with the solitary 
wave. The wave form was observed at tvlb2 = 0.10. 

To compare the observed shapes of the solitary waves with the theoretical 
wave form (4.18) we must first estimate the amplitudes of the waves, which are 
specified by the departure of the wave speeds from the critical speed for in- 
finitesimal waves. As indicated above the critical speed W, has been estimated 
from the theoretical velocity distribution (3.27) and the results of this calculation 
are given in figure 9. Also shown in figure 9 are some measurements of the wave 
speed W ,  which was determined from the time taken for the wave to travel 
between two observation points along the tube. The error in measuring these 
wave speeds is less than 2 %. However, in the time taken for the wave to travel 
between the two observation points the circumferential velocity distribution 
changed significantly and hence the theoretical velocity distribution (3.27) was 
computed for the mean value t had during the time the wave travelled between 
the two observation points. 

When tv/b2 is about 0.08 the circumferential velocity distribution is very nearly 
a parabolic function of the radius. Thus, in view of the approximations involved 
in the experiment, it seems reasonable to compare a wave form observed at  an 
instant near tv/b2 = 0.08 with the theoretical solitary wave that would arise on 
the swirling flow in which F' is proportional to r 2 :  for a distribution of this kind 
the theoretical wave shape may be found easily (see Benjamin 19670). 

A measurement of the displacement and velocity of a particle on the axis is 
shown in figure 10 €or a wave generated at tv/b2 = 0.092. The theoretical wave 
form of figure 10 has been computed on the assumption that the wave is 
propagating into a parabolic distribution of circumferential velocity, and 

6 F L M  42 
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that the critical speed W has the value given by the model distribution (3.27) 
at tv/b2 = 0-092. The agreement between the experimental results and the theory 
is thought to be remarkably good when the many approximations involved with 

I I I I I I J 0.2 I 
0.02 0.04 0.06 0.1 0.2 0.3 0.6 1 .o 

tv/b* (=  t/641) (log scale) 

FIGURE 9. The critical speed for infinitesimal waves propagating in a circumferential 
velocity distribution of the form (3.27). The experimental points are velocities of solitary 
waves generated a t  the specified times after the beginning of the tube rotation. 

Time scale (periods of rotation) 

FIGURE 10. A solitary wave in a long cylinder of rotating liquid showing the displacement 
and velocity of particles on the axis a t  two positions along the tube separated by 16b. 
The wave form was measured at  tv/b2 w 0.092. W ,  (theoretical) = 0.423Clb ; W(measured) 
= 0.438Qb. The dashed curve is the theoretical wave form from Benjamin ( 1 9 6 7 ~ )  using 
these values of W and W,,, and assuming a parabolic distribution of the circumferential 
velocity. The wave was generated 18b above the first observation point. 

the experiment are taken into account: the amplitude and length of the theoreti- 
cal wave form depend crucially on the factor ( W - W J ,  which is small, and we 
have already indicated there is some uncertainty in W,. However, this comparison 
between the theory and the experimental results does suggest that the solitary 
wave may be a little shorter than is expected at the second stage of approximation. 
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